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Abstract. The effect of magnetic field reversal on the transmission of Mössbauer radiation
through a crystal as well as on the reaction yield is analysed. This reversal is shown to cause
a strong flash of the transmitted radiation intensity followed by oscillations which attenuate over a
time of the order of the nuclear lifetime. At the same time, there will be a suppression of inelastic
channels and reactions for the nuclei lying near the face surface of the crystal. In contrast, for deep-
lying nuclei there is an enhancement of the reaction yield due to a sharp increase of the recoilless
radiation intensity in that region.

1. Introduction

A lot of papers (see the surveys [1–4]) are devoted to Mössbauer spectroscopy of soft ferro-
magnets subject to an external alternating magnetic field. When the crystal is placed in the
radio-frequency (rf ) magnetic field with frequency�, the Mössbauer spectrum consists of a
set of equidistant lines spaced by�. Such a spectrum collapses to single line (doublet) at high
frequencies. Pfeiffer [1–5] explained this effect by assuming that there are periodic reversals
of the crystal magnetization governed by the rf field which ensure that there are reversals of
the magnetic field at the nucleus between two values +h0 and−h0. The corresponding step-
wise-reversals model was constructed in [6–8]. The reversals of the magnetic field and forced
vibrations were simultaneously taken into account in [9, 10]; that enabled us to explain the
Pfeiffer results quantitatively [1, 5]. It was also shown [10, 11] that asymmetric reversals of the
magnetic field at the nuclei lead to splitting of the absorption lines. New interesting effects arise
in the case of low-frequency reversals, when the observed spectrum takes the form of a six-line
Zeeman pattern with broadened lines [12, 13]. Transient beats of the absorption cross section
are shown [8] to arise just after such reversals. The cross section even takes negative values
within some time intervals, which implies the enhancement of the radiation intensity behind
the absorber. The effect of the magnetic field reversal on the transmission of the Mössbauer
radiation through a thick single crystal of iron borate,57FeBO3, has been studied recently by
Shvyd’koet al[12, 13]. This crystal is an antiferromagnet with slightly canted spins of opposite
sublattices. Therefore its small magnetization is easily governed by an external magnetic field.
The reversal of this magnetic field causes almost instant alteration of the directions of all atomic
spins to the opposite ones and simultaneous reversal of the magnetic fields at the Mössbauer
nuclei which are antiparallel to the spins. The reversals of the field at the nuclei between the
two values±h0 were found in [12, 13] to be periodically repeated. The periodT = 2 µs is
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much greater than the lifetimeτ = 141 ns of the57Fe isotope. Therefore transient oscillations
of the transmitted beam intensity, observed in [12, 13], practically attenuate between the
neighbouring reversals, and reversals may be treated as isolated.

Moreover, Shvyd’koet al [13] presented a theory, having, unfortunately, a number of
disadvantages. While taking the incident wave as having frequencyω, they used as the
perturbationV (t) the interaction of the nucleus with the whole time-dependent electromagnetic
wave packet arising in the crystal. It would be more correct to use a strict expression forV

and consider the scattering of every plane component of the wave packets inside the scatterer,
as is prescribed by collision theory (see, e.g., [14–16]). Something like that has been done by
Kaganet al [17], calculating the response of the crystal to the pulse of synchrotron radiation.
They used solutions of the dynamical scattering theory for every plane component of such
pulses.

Additionally, Shvyd’koet al [13] calculated the wave function for the whole system of the
Mössbauer nuclei of the crystal only in first order of time-dependent perturbation theory. But
when finding the wave function to describe the resonant scattering ofγ -quanta by a crystal, we
must take into account all of the powers ofV (t) incorporated in theT -matrix. Furthermore,
the nuclear wave function, used in [13], is a mixture of the wave functions of the ground
and excited states of the nucleus. Calculating the mean value of the nuclear current-density
operatorĵN with such wave functions, the authors of [13] write down only the transitional
components ofjN and arbitrarily omit the static nuclear moments both of the excited states
and of the ground state, which are also contained in such a mean value.

Here we construct a strict dynamical theory for the transmission of Mössbauer radiation
far from the Bragg condition through a crystal with reversing magnetization using a general
collision theory in classical fields, constructed in [18]. It is based on the concept of the
composite Hilbert space [19–21], which allows one to solve the time-dependent Schrödinger
equation by the methods of stationary theory. Previously we used this approach for analysis
of the scattering ofγ -quanta and neutrons by crystals in alternating fields [22–25], neutron
capture by nuclei in a laser beam [26], and x-ray acoustic [22, 27] and neutron acoustic [28]
resonances.

A relatively new contribution here is the analysis of the influence of the magnetic field
reversal on the yield of conversion electrons.

We should mention also the papers [29–32], which dealt with the decay of the nuclei
excited by short pulses of synchrotron radiation. The duration of such pulses is much less than
the nuclear lifetimeτN. Under these conditions, nuclear excitation and decay are independent
processes. At the same time, in the case of Mössbauer scattering, the excitation and decay of
the nuclei are intermixed and proceed within the same time interval,∼τN. Thus, the results
from [29–32] cannot be applied here.

2. Wave functions

We shall consider a system which consists of the crystal, containing Mössbauer nuclei, plus the
quantized electromagnetic field. Let the magnetic field at the Mössbauer nucleus reverse from
+h0 to−h0 at the momentt = 0. In order to investigate transient phenomena caused by this
reversal, we suppose that such reversals periodically repeat with periodT , greatly exceeding
the nuclear lifetime:

h(t) = h0f (t) = h0f (t + T ) (1)
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where

f (t) =
{

+1 −T/2< t < 0

−1 0< t < T/2.
(2)

Choosing the quantization axisζ alongh0, one can write down the interaction operator
for the nucleus and the magnetic field as

V̂f (t) = −γκ Îζ h0f (t) (3)

whereÎ is the spin operator (in units of ¯h) of the nucleus andγκ = gκµN is the gyromagnetic
ratio of the nucleus, which is a product of the nuclear magnetonµN and theg-factorgκ ; the
subscriptκ = g for the ground nuclear state andκ = e for the excited one.

The Hamiltonian of the system will be

Ĥ = Ĥ0(t) + V̂

Ĥ0(t) = ĤN + Ĥr + Ĥe + Ĥph + V̂f (t)
(4)

where ĤN, Ĥr , Ĥe, and Ĥph are respectively the Hamiltonians of the nucleus, quantized
electromagnetic field, atomic electrons, and crystal lattice. The perturbation operatorV̂ defines
the interaction of the nucleus and atomic electrons with the quantized field, for which we use
a standard quantum-mechanical expression (see, e.g., [33, 34]):

V̂ = V̂ N
r + V̂ e

r

V̂ N (e)
r = −1

c

∫
ĵN (e)(r) · Â(r) dr

(5)

whereĵN(r) andĵe(r) are the current-density operators of the nucleus and atomic electrons
respectively;Â(r) is the vector potential operator. Hereafter we use the Coulomb gauge for
the quantized electromagnetic field.

The time-dependent Schrödinger equation with a periodic Hamiltonian̂H(t) = Ĥ (t +T )
is easily solved in the composite Hilbert space of square integrable periodic functions
ψ(q, t) = ψ(q, t + T ) both of the spatial coordinatesq and timet , where the scalar product
of the functionsψ(q, t) andϕ(q, t) is defined as [18–21]

〈〈ψ(q, t)|ϕ(q, t)〉〉 = 1

T

∫ T/2

−T/2
dt
∫

dq ψ∗(q, t)ϕ(q, t) (6)

and the Floquet operators

Ĥ0 = Ĥ0 − i h̄
∂

∂t
Ĥ = Ĥ − i h̄

∂

∂t
(7)

are used instead of the HamiltoniansĤ0 andĤ .
The Mössbauer nucleus subject to the periodically reversing magnetic field is described

by the Floquet wave function

9N
IκMκ

(t) = ψN
IκMκ

(t)e−iEN
Mκ
t/h̄ (8)

whereψ(t) = ψ(t +T ) is a periodic function of time. In the interval−T/2< t < T/2 it may
be written as

ψN
IκMκ

(t) = |IκMκ〉 exp

(
− i

h̄
γκMκh0|t |

)
(9)

where|IκMκ〉 stands for the stationary wave function of the nucleus in theκth state with spinIκ
and its projectionMκ on the axisζ. The quasi-energies, which correspond to (9), coincide with
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the energies of the nucleus in the absence of the magnetic field, i.e.EN
Mg
= 0 andEN

Me
= E′0,

whereE′0 is the energy of the resonant level of the nucleus.
Let the incidentγ -quantum have wave vectork, polarizatione, and frequencyω = E/h̄.

Then the initial state of the whole system is described by the wave function

9(q, t →−∞) = ϕa(q, t)e−iEa t/h̄

ϕa(q, t) = φα(t)|k, e〉 φα(t) = ψN
IgMg

(t)|{v0
s }〉.

(10)

Here the functionφα(t) describes the initial state of the scatterer with the initial set of phonons
{v0
s }. The electron function is omitted for brevity. The corresponding quasi-energyEa is a

sum of the photon energyE and the scatterer quasi-energyεα, which is the lattice vibrational
energy.

At any moment, the wave function of the system is [18]

9(q, t) = ψ(+)
a (q, t)e−iEa t/h̄ (11)

where

ψ(+)
a (q, t) = ϕa(q, t) +ψ(+)

sc (q, t)

ψ(+)
sc (q, t) = (Ea + iη − Ĥ0)

−1T̂ ϕa(q, t).

Hereη→ +0, and

T̂ = V̂ + V̂ Ĝ(Ea + iη)V̂ (12)

is the transition operator with the Green operator

Ĝ(z) = (z− Ĥ)−1. (13)

First we shall consider the scattering ofγ -quanta. In this case the final states of the system
are described by the following eigenfunctions of the Floquet operatorĤ0:

|b, n〉 = ϕb(t)ein�t ϕb(t) = φβ(t)|k′, e′λ′ 〉 φβ(t) = ψN
IgM ′g

(t)|{v′s}〉 (14)

with the corresponding quasi-energies

Eb,n = Eb + nh̄� Eb = E′ + εβ εβ =
∑
s

h̄ωs(v
′
s + 1/2) (15)

whereE′ is the energy of the scatteredγ -quantumk′, e′λ′ andεβ is the vibrational energy of
the lattice in the final state.

The radiation may be described by a wave function explicitly depending onr andt with
the aid of the electric field strength operator [14]

Ê(r, t) = i
∑
k,λ

√
2πh̄ωk

[
âk,λeλe

ik·r−iωkt − â+
k,λe

∗
λe
−ik·r+iωkt

]
(16)

whereâk,λ andâ+
k,λ are annihilation and creation operators for the photonk, eλ. In particular,

the photon in the state|k, e〉 is described by

E(r, t) = 〈0|Ê(r, t)|k, e〉 = E0eik·r−iωt (17)

whereE0 = i
√

2πh̄ωe. By analogy, the radiation scattered into theβth channel is described
by the wave function8(β)

sc = 〈β|ψ(+)
sc 〉 or by

Esc(r, t) = 〈0|Ê(r, t)|8(β)
sc 〉. (18)

If the incident radiation is described by the wave packet

E(z, t) = E0

∫ ∞
−∞

g(ω)eikz−iωt dω (19)
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then at any moment the whole system is described by the wave function (see also [14])∫ ∞
−∞

g(ω)ψ(+)
a (q, t) dω (20)

with ψ(+)
a (q, t) given by equation (11).

In particular, when aγ -quantum is emitted by the nucleus excited at the initial moment
t0, we have

g(ω) = − 1

2π i

eiEt0/h̄

E − E0 + i0e/2
(21)

where0e andE0 are respectively the width and energy (including the possible Doppler shift)
of the emitter level. Then such an emitted wave is described by

E(z, t) = E0 exp(−iω0(t − t0)− 0e(t − t0 − z/c)/2h̄) θ(t − t0 − z/c) (22)

where

θ(x) =
{

1 x > 0

0 x < 0.
(23)

3. Scattering by one nucleus

The electromagnetic wave, coherently scattered by thej th nucleus, vibrating about the origin
of the coordinate frame, in units of i(2πh̄ω)1/2, is [8]

Esc(r, t)
j

coh =
∑
λ′=±1

∞∑
n=−∞

f
(n)
coh(k, eλ;k′n, e′λ′)Nj e′λ′

1

r
e−iωnt∗ (24)

wheret∗ = t − r/c is the retarded time and

ω′ = ωn = ω − n� = knc (25)

are possible frequencies of scattered photons. The coherent Raman scattering amplitude for
scattering ofγ -quanta by the nucleus with absorption (n < 0) or emission (n > 0) ofn quanta
of the alternating field with frequency� is given by [8]

f
(n)
coh(k, eλ;k′, e′λ′)Nj = −pj

eWj (k)−Wj (k
′)

2Ig + 1
c−2

∑
Mg,Me

〈e|ĵN
λ′ (k

′)|g〉∗〈e|ĵN
λ (k)|g〉

×
∞∑

m=−∞

a∗eg(m− n)aeg(m)

E − E′0 −mh̄� + i0/2
(26)

wherepj is the probability of finding a resonant isotope at thej th site,0 is the width of the
resonant level, e−W is the Lamb–M̈ossbauer factor,|κ〉 = |Iκ,Mκ〉 and

ĵN
λ (k) =

∫
dr eik·reλ · ĵN(r). (27)

Also, we use the following Fourier coefficients:

aeg(n) = 1

T

∫ T/2

−T/2
dt e−int−αeg|t | (28)

where

αeg= (γgMg− γeMe)h0/h̄. (29)
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Using theζ -function [33]

ζ(x) =
∫ ∞

0
e−ixξ dξ = 1

i

1

x − iη
(30)

we easily find the asymptotic formula forαeg asT →∞:

aeg(n) = 1

iT

[
1

n� + αeg− iη
− 1

n�− αeg + iη

]
. (31)

Substituting (26) into (24), we first take into account that

∞∑
n=−∞

a∗eg(m− n)ein�t = eiαeg|t |eim�t . (32)

Furthermore, asT →∞ we replace the sum overm by the integral

1

T

∞∑
m=−∞

→ 1

2π

∫ ∞
−∞

dω̃ (33)

wherem� → ω̃ = ω′ − ω indicates the frequency alteration of the inelastically scattered
photon. As a result, the coherently scattered wave becomes

Esc(r, t)
j

coh = −pj
e−Wj (k)−Wj (k

′)

2Ig + 1

∑
λ′=±1

e′λ′c
−2

∑
Me,Mg

〈e|ĵN
λ′ (k

′)|g〉∗〈e|ĵN
λ (k)|g〉eiαeg|t∗|

×
(

1

2π i

)∫ ∞
−∞

dω̃
eiω̃t∗

E − E′0 − h̄ω̃ + i0/2

×
(

1

ω̃ + αeg− iη
− 1

ω̃ − αeg + iη

)
e−iωt∗

r
. (34)

We shall consider only the case in which ¯h|αeg| � 0, i.e. where the Zeeman spectrum
has a well-resolved hyperfine structure. Also, we assume the following resonant condition for
incidentγ -quanta to be fulfilled:

E ' E′0 + h̄αeg. (35)

Then only the isolated transitionMg → Me is excited in the nucleus placed in the constant
magnetic field +h0. In this case all of the other nuclei withM ′g 6= Mg do not ‘feel’ the
Mössbauer radiation at all. In contrast, after the reversal of the field from +h0 to−h0, only
the transition−Mg→−Me becomes resonant.

By definition, the coherent scattered wave (34) is

Esc(r, t)
j

coh =
1

2Ig + 1

∑
Mg

Esc(r, t)
j

Mg→Mg
(36)

whereEsc(r, t)
j

Mg→Mg
is the wave scattered by thej th nucleus, having the same quantum

numberMg in both the initial and final states. It is instructive to extract the contributions
Esc(r, t)

j

Mg→Mg
to (36) from the nuclei with quantum numbers +Mg or−Mg.

Performing a contour integration in (34) for nuclei with quantum number +Mg, one gets

Esc(r, t)
j

Mg→Mg
=
∑
λ′
e′λ′fgg(k, eλ;k′, e′λ′)Nj

1

r

{
(1− θ(t∗))e−iωt∗ + θ(t∗)e−iω−0 t

∗−0t∗/2h̄
}

(37)
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wherefgg is the elastic scattering amplitude ofγ -quanta by the nucleus +Mg situated in the
constant fieldh0:

fgg(ω) = fgg(k, eλ;k′, e′λ′)Nj = −pj
e−Wj (k

′)−Wj (k)

2Ig + 1

c−2〈e|ĵN
λ′ (k

′)|g〉∗〈e|ĵN
λ (k

′)|g〉
E − E+

0 + i0/2
(38)

and theω±0 = E±0 /h̄ stand for the resonant frequencies of the transitions±Mg→±Me in this
field with transition energiesE±0 = E′0 ± h̄αeg.

Thus, whent < 0, the nuclei, having initial quantum numberMg, do not ‘anticipate’ a
future reversal of the magnetic field in accordance with the causality principle. They scatter
as if in the stationary state. After the reversal(t > 0), only previously excited nuclei of this
sort continue to decay, yielding the exponentially attenuating tail of the scattered wave. It has
the carrier frequencyω−0 , which already corresponds to the de-excitation transitionMe→ Mg

in the new field−h0.
For the nuclei in the initial state|−Mg〉, the scattered wave is

Esc(r, t)
j

−Mg→−Mg
=
∑
λ′
e′λ′f−g,−g(k, eλ;k′, e′λ′)Nj

1

r

{
e−iωt∗ − e−iω+

0 t
∗−0t∗/2h̄

}
θ(t∗)

(39)

wheref−g,−g(ω) is defined by equation (38) with e, g → −e,−g. This wave arises only
after the reversal. It contains the same ordinary wave∼e−iωt∗ as in the stationary case and an
additional transient attenuating wave with carrier frequencyω+

0 associated with the transition
−Mg→−Me in the negative field−h0.

Later we shall analyse the transmission of the radiation through the slab whenk = k′ is
directed perpendicularly toh0. Then onlyγ -quanta having linear polarizatione perpendicular
to h0 provide transitions withMe−Mg = 0 in 57Fe and those withe parallel toh0 take part
in transitionsMe−Mg = ±1. Such eigen-polarization does not change whenγ -quanta pass
through the crystal. Ifk = k′ andeλ = e′λ = e, then the amplitudesfgg = f−g,−g = 2fcoh.

Substitution of (37) and (39) into (36) gives the complete coherent wave scattered to the
forward direction:

Esc(r, t)
j

coh = E0fcoh(k, e;k, e)Nj
1

r

{
e−iωt∗ +

(
e−iω−0 t

∗ − e−iω+
0 t
∗)

e−0t
∗/2h̄θ(t∗)

}
. (40)

It is interesting that the transient wave packets are always concentrated at the resonant
frequenciesω±0 , independently of the frequencyω of the incident photons.

The result (39) may be also obtained by means of the stationary scattering theory, by
taking the incident wave

E(z, t) = E0e−iω(t−z/c)θ(t − z/c). (41)

It interacts with the nucleus at the origin of the coordinate frame only after the reversal.
Therefore all of the scattering proceeds as if the field−h0 exists all the time,−∞ < t <∞.
The wave (41) may be rewritten as

E(z, t) = E0

∫ ∞
−∞

g(ω′)e−iω′(t−z/c) dω′ (42)

with

g(ω′) = − 1

2π i

1

ω′ − ω + iη
. (43)

The wave scattered by the−Mg-nucleus is given by

Esc(r, t)
j

−Mg→−Mg
∼
∫ ∞
−∞

g(ω′)f−g,−g(ω
′)e−iω′t∗ dω′. (44)
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Performing the contour integration we return to expression (39).
The wave (40) is generated by the incident plane wave with frequencyω. If the target is

interacting with the wave packet (22), the scattered one takes the form

EEsc(r, t)jcoh ∼
1

(ω0 − ω+
0)

e−0(t
∗−t0)/2h̄

{ (
e−iω0(t

∗−t0) − e−iω+
0(t
∗−t0)

)
θ
(
t∗ − t0

)
+
(
e−iω−0 t

∗ − e−iω+
0 t
∗) (

eiω0t0 − eiω+
0 t0

)
θ (−t0) θ

(
t∗
) }
. (45)

Here we see the ordinary wave,∼θ(t∗ − t0), which exists also in the stationary case, and
additional transient ones,∼θ(−t0), which arise only if the incident wave packet reaches the
scatterer prior to the field reversal. Every part ofEEsc has the same attenuation. Temporary
beats of the scattered intensity depend strongly on the initial momentt0.

4. Transmission through the crystal

We shall analyse the transmission of Mössbauer radiation through a crystal stab far from
the Bragg condition, when any diffraction is unimportant. Let the crystal occupy the space
0 6 z 6 D and consist ofN infinite layers of elementary cells, which are perpendicular
to the axisz. The lattice vectorl = l1a1 + l2a2 + l3a3, whereai are the basis vectors;
l1, l2 = 0,±1,±2, . . . ,±∞ and 06 m = l3 6 N − 1. The basis vectorsa1 anda2 lie in
the planex, y. The thickness of one layer of elementary cellsd = a3 · ez, whereez is the
unit vector along the axisz. The crystal thickness isD = Nd. Let incidentγ -quanta have the
wave vectork = {0, 0, k} and eigen-polarizatione.

Interference of all of the spherical waves scattered by the atoms of the face layer of
elementary cells(m = 0) gives a number of scattered plane waves. Far from the Bragg
condition, we are interested only in the wave scattered to the forward direction:

E(0)
sc (z, t) = i

{
Fe−iωt̃ +FN

(
e−iω0

− t̃ − e−ω0
+ t̃
)

e−0t̃/2h̄θ(t̃)
}
E0 (46)

where t̃ = t − z/c andF is the dimensionless straightforward scattering amplitude of the
incident waveE(0)(z, t) = E0 exp(−iωt̃) with E0 ∼ e, scattered by a single layer. It equals
the sum of the Rayleigh and nuclear scattering amplitudes:

F = FR +FN (47)

which are determined by the formula

FR (N) = 2π

kz(v0/d)

∑
j

fcoh(k, e;k, e)R (N)j (48)

wherev0 is the volume of the elementary cell. The summation in (48) is carried out over all
atoms within the elementary cell. The nuclear amplitude may be written as

FN = − beg/N

E − E+
0 + i0/2

(49)

wherebeg is the thickness parameter of the absorber for the isolated transitionMg→ Me:

beg= σ00

4
e−2WaJeg(π/2)n0. (50)

σ0 stands for the resonant cross section,Jeg(π/2) determines the relative intensity of the line
Me → Mg, andn0 is the number of M̈ossbauer isotopes per unit square of the absorber.
The wave incident on the next layer,E(1)(t̃ ), is a sum of the incident waveE(0)(t̃ ) and the
scattered waveE(0)

sc (t̃ ). This wave will be scattered by the next layer, etc. Repeating such a
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procedure, we can find the electromagnetic wave at any point of the crystal. It consists of the
ordinary wave∼ exp(iK · r) with the wave vectorK = {0, 0, k + F/d} and some transient
wave packets, which appear att > 0 and ‘feel’ only the constant field−h0. Therefore its
scattering proceeds as in the stationary case with the field−h0, existing throughout the whole
time period without any reversals. In other words, the transient waves∼eiω±0 t̃ do not give rise
to other transient ones when colliding with the nuclei of the crystal. They are produced only
by the ordinary wave exp(iK · r − iωt). Then the transient part of the wave scattered by the
m′th layer will be

E(m′)
sc (t̃ )tr = iFN

{
eik−0 (z−m′d)−iω−0 t − eik+

0 (z−m′d)−iω+
0 t
}

e−0t̃/2h̄θ(t̃ )E0eiKm′d (51)

wherek±0 = ω±0 /c.
In order to analyse the subsequent transmission of this wave packet through the crystal,

we expand it in terms of the plane waves:

e−iω±0 t̃−0t̃/2h̄θ(t̃) = − 1

2π i

∫ +∞

−∞
dE′

e−iω′ t̃

E′ − E±0 + i0/2
. (52)

Note again that this wave packet ‘feels’ only the field−h0, as if it were constant throughout
the whole time period−∞ < t <∞. Hence, transmission of every plane component of (52)
is described by the stationary dynamical theory. That is, the wave∼e−iω′ t̃ generates in the
regionz > m′d a plane wave∼eiK ′z−iω′t with K ′ = k′ + F ′/d (F ′ is given by (47)–(49) with
E replaced byE′. Then the transient wave (51), reaching the layerm > m′, transforms to the
wave

E(m′)
sc (z)tr → iFN(I−(ym′)− I+(ym′)) exp

[ −ibeg(m
′)

E − E+
0 + i0/2

]
eimFR

E0 (53)

whereym′ = 1−m′/m and theI± designate the integrals

I±(ym′) = − 1

2π i

∫ +∞

−∞
dE′

e−iω′ t̃

E′ − E±0 + i0/2
exp

[
− ibeg(m)ym′

E′ − E±0 + i0/2

]
. (54)

beg(m) = (m/N)beg is the thickness parameter form layers. The wave incident on themth
layer of the crystalE(m)(z, t) will be the sum of the ordinary wave and all partial transient
waves emerging at the layers with numbersm′ = 0, 1, . . . , m − 1. One can replace the sum
overm′ by the integral

1

m

m−1∑
m′=0

→
∫ 1

0
dy ym′ → y. (55)

Then forE(m)(z, t) with z ≈ md, one gets the expression

E(m)(z, t) = Eord(z, t) +Etr (z, t)
(+) +Etr (z, t)

(−) (56)

where

Eord(z, t) = exp

(
− ibeg(m)

E − E+
0 + i0/2

)
e−iωt̃eimFR

E0 (57)

is the ordinary wave and the waves

Etr (z, t)
(±) = ± ibeg(m)

E − E+
0 + i0/2

∫ 1

0
dy exp

(
− ibeg(m)(1− y)
E − E+

0 + i0/2

)
I±(y)eimFR

E0 (58)

are the transient waves generated by the nuclei that are in the initial states∓Mg.
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Following [35], we calculate the integralsI± with the aid of the familiar relation

exp

[
u

2

(
v − 1

v

)]
=

∞∑
k=−∞

Jk(u)v
k (59)

whereJk(u) is the Bessel function of thekth order. Putting

z = E′ − E+
0 + i

0

2
u = 2

√
beg(m)yt̃/h̄ v = −i

√
t̃/h̄

beg(m)y
z (60)

and performing contour integration on the complexz-plane one gets

I±(y) = J0

(
2
√
beg(m)yt̃/h̄

)
e−iω±0 t̃−0t̃/2h̄θ(t̃). (61)

Equations (56)–(61) determine the coherent electromagnetic wave inside the crystal atz ' md.
Whenm = N and z > D, they describe the transmitted waveE(N)(z, t), excited by the
incident wave with frequencyω. Correspondingly, the incident wave packet (19) generates
the transmitted wave

EEtr (z, t) =
∫ ∞
−∞

g(ω)E(N)(z, t) dω. (62)

The flux density ofγ -quanta∼| EE |2 still depends ont0. Averaging it overt0, we take into
account that

1

2π

∫ ∞
−∞

g(ω)g(ω′)∗ dt0 = |g(ω)|2δ(ω − ω′) (63)

with |g(ω)|2 proportional to the energy distribution of the incident recoilless radiation

w(0)e (E) = A 0e/2π

(E − E0)2 + (0e/2)2
. (64)

The amplitudeAdetermines the relative intensity of the phononless line in the incident beam. In
[13] the incident radiation has been filtered through a polarizer completely absorbingγ -quanta
with one polarization. For such a case,A = 0.5e−2We, where e−2We is the Debye–Waller factor
of the emitter. For the Co(Cr) source ofγ -quanta used in the experiment in [13], e−2We = 0.75
atT = 300 K [36]. Therefore, in the numerical calculations we tookA = 0.37.

It is useful to introduce the dimensionless parameters

βeg= 4beg/0 τ = 0t̃/h̄ γe = 0e/0 aeg= 2h̄αeg/0

x0 = 2(E0 − E+
0)/0 x = 2(E − E+

0)/0
(65)

whereτ is the time in units of the nuclear lifetime ¯h/0 andx0 is the detuning parameter. Then
the averaged flux density of all transmittedγ -quanta in units ofj0e−µeD is

j (t) = B +A
∫ ∞
−∞

(γe/π) dx

(x − x0)2 + γ 2
e

exp

(
− βeg

x2 + 1

)
|1 +F(x, τ )|2 (66)

whereB = 1− A stands for the background,j0 is the flux density of incidentγ -quanta, and
µe = 2 ImFR/d is the photoelectron absorption coefficient. The functionF(x, τ ) describes
transient beats following the reversal of the magnetic field:

F(x, τ ) = sin(aegτ/2)

(
βeg

x + i

)
ei(x+aeg)τ/2−τ/2

∫ 1

0
dy J0

(√
βegτy

)
exp

(
iβegy/2

x + i

)
θ(τ ).

(67)
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If τ < 0, the functionF(x, τ ) = 0 and equation (66) coincides with the familiar integral
for the transmitted beam intensity (see, e.g., [37]). In the case of thin crystals(β � 1),
expanding (66), (67) in terms ofβ and retaining only linear terms, one has

j (t) = 1− n0σ̄a(ξ, τ ) + O(β2) (68)

wheren0 is the number of resonant isotopes per unit square andσ̄a(ξ, τ ) is the instantaneous
absorption cross section of M̈ossbauer radiation averaged over the energy distribution (64).
Forγe = 1,

σ̄a(ξ, τ ) =
(
βeg

2n0

)
A

1 + (ξ − ξeg)2

{
1− 2 sin(ξegτ)

[
(ξ − ξeg) cos(ξτ ) + sin(ξτ )

]
e−τ θ(τ )

}
(69)

where

ξ = (x0 + aeg)/2 ξeg= aeg/2.

Formula (69) agrees with our previous more exact calculations [8] of the absorption cross
section, in which all of the transitions (including nonresonant ones) were taken into account.

Figure 1. The transmitted beam intensity versus time after the reversal of the magnetic field for
the transitionsa: −1/2→−3/2,b: −1/2→−1/2, andc: −1/2→ +1/2. On the left we show
our calculations; on the right we show the experimental data of Shvyd’koet al [13], indicated by
dots, together with their calculations, represented by solid traces.
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For a thick crystal(βeg/2 � 1) the integral in (67) is evaluated by the stationary-phase
method. When 0< τ ∼ 1 we get (see also [13])

j (t) = B + 4A sin2

(
aegτ

2

)
J 2

0

(√
βegτ

)
θ(τ ). (70)

The flux densityj (t) should still be averaged overt using some time resolution function
of the detector. Following [38], we reduce such averaging to integration:

j̄ (t) = 1

1t

∫
1t

j (t + t ′) dt ′ (71)

within the time gate of the detector1t . Numerical calculations of̄j(t) are compared
with experimental data [3] in figure 1 for three exact resonant transitionsMg → Me

(a: −1/2 → −3/2, b: −1/2 → −1/2 andc: −1/2 → +1/2) in 57Fe for x0 = 0. Here
we choose1t = 7 ns and use the parametersβa = 32.7, βb = 43.6, βc = 10.9,0e = 3.950,
0 = 0.097 mm s−1, aa = −105.4, ab = −60.0, ac = −16.0, directly measured in [13].

5. Conversion electrons

In this section we will analyse the effect of the magnetic field reversal on the yield of conversion
electrons during the(γ, e) reaction. In the conversion channel the final states of the whole
system will be

|b; n〉 = ψN
IgM ′g

(t)|{v′s}〉|0〉φf (r)ein�t (72)

where|0〉 stands for the vacuum state of the quantized field; the functionφf (r) describes the
final state of the emitted conversion electron. Neglecting any influence of the Coulomb and
magnetic fields on this function, one hasφf (r) = eiq·r, whereq is the wave vector of the
emitted electron. Also, the initial wave function (10) should be supplemented by the factor
φi(r) to describe the bound atomic electron.

We consider only the isotope57Fe with M1 transitions. Since the electric transitions are
not fundamental for this nucleus, the transfer of its energy to the bound electron will be by a
two-step process even in the Coulomb gauge. The excited nucleus first emits the transverse
photonk′, e′λ′ , and this is then absorbed by the electron.

Such(γ, e) reaction is determined by the followingT -matrix:

〈〈b, n|T̂ |a, 0〉〉 =
∑
c,m

∑
c̃,m̃

〈〈b, n|V̂ e
r |c̃, m̃〉〉

× 〈〈c̃, m̃|Ĝ(Ea + iη)|c,m〉〉〈〈c,m|V̂ N
r |a, 0〉〉 (73)

where intermediate states of the system are described by the functions

|c,m〉 = ψN
IeMe

(t)|{vs}〉|0〉φi(r)eim�t

|c̃, m̃〉 = ψN
IgM ′g

(t)|{v′′s }〉|k′, e′λ′ 〉φi(r)eim̃�t (74)

and the quantum numbersk′, e′λ specify a virtualγ -quantum emitted by the nucleus. Each
such function satisfies the eigenvalue equation

H̃0|c,m〉 = Ec,m|c,m〉 (75)

with quasi-energyEc,m = Ec +mh̄�.
In theT -matrix (73), the right-hand matrix element describes absorption of the incident

γ -quantumk, e by the nucleus, while the left-hand one describes absorption of the virtual
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photonk′, λ′ by an electron. When the system makes a transition from|c̃〉 to |b〉, the state of
the nucleus remains the same. Therefore a trivial integration over time gives

〈〈b, n|V̂ e
r |c̃, m̃〉〉 = 〈b|V̂ e

r |c̃〉δnm̃. (76)

Calculating the Green matrix, we can use the series presented in chapter 8 of [14]. Then one
has

〈〈b, n|T̂ |a, 0〉〉 =
∑
c,m

M ′g′e
〈〈c,m|V̂ N

r |a, 0〉〉
Ea − Ec,m + i0/2

(77)

where the factor

M ′g′e =
∑
c̃

〈b|V̂ e
r |c̃〉〈〈c̃, n|V̂ N

r |c,m〉〉
Ea + iη − Ec̃,n (78)

determines the conversion process.
The summation over̃c in (78) includes the integration over the wave vectorsk′ of the virtual

γ -quanta with energyE′. Performing such an integration, one can replace the quasi-energies
Ec̃,n by the valueEc̃, sinceh̄�� E′.

The Raman amplitude of the(γ, e) reaction with emission(n > 0) or absorption(n < 0)
of n photons with frequency� by the conversion electron is related to theT -matrix by

f
(n)
gg′ (k, e; qn) = −

m

2πh̄2 〈〈b, n|T̂ |a, 0〉〉 (79)

whereq ′n =
√

2mε′n/h̄ is the wave vector of the emitted electron with massm. Its kinetic
energy

ε′n = ε′ − nh̄� (80)

whereε′ is the conversion-electron energy in the absence of reversals, i.e.

ε′ = ε + γg(M
′
g−Mg)h0

ε = h̄2q2

2m
= E −A

(81)

with A standing for the binding energy of the electron in the atom. The subscripts of the
amplitudes indicate the transition of the nucleusMg → M ′g during the reaction. It is easily
seen that

qn ≈ q − n�/v (82)

wherev = h̄q0/m is the velocity of the electron moving with the energyε0 = E′0 −A.
First we shall consider the electron yield from the atoms of the face layer(m = 0). In the

slow-collision approximation [39], one has

f
(n)
gg′ (k, e; qn) ∼

∑
Me

∞∑
m=−∞

a∗eg′(m− n)aeg(m)

E − E′0 −mh̄� + i0/2
M ′g′ej

N(k)eg. (83)

Here the phonon factors are omitted for brevity. After summation of the cross section over{v′s}
and averaging over{v0

s }, they give only the Debye–Waller factor e−2W(k) for the phononless
absorption ofγ -quanta. The conversion electron emitted by an atom lying on the entrance
surface is described by the wave function

ψsc(r, t)
(0)
Mg→M ′g =

∞∑
n=−∞

f
(n)
gg′ (k, e; q′n)

1

r
eiq ′nr−iε′nt/h̄. (84)

WhenT →∞, the functionψsc(r, t) can be calculated by analogy withEsc(r, t). However,
there is an essential difference in such calculations. Previously we were interested in the
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coherent Raman scattering ofγ -quanta and therefore have been calculating the coherent waves
Esc(r, t)

j

coh, whose interference ensures the existence of the plane waves inside the crystal.
But now we study the conversion process which proceeds only at a single atom. In other
words, there is no interference of the electron waves generated by different atoms. Therefore
we calculate only the functionψsc(r, t)

j

Mg→M ′g and do not look for the coherent waves.
The flux density of the conversion electrons emitted from thej th atom is given by

je
sc(ω, t)j = q(2Ig + 1)−1

∑
Mg,M ′g

∣∣∣ψsc(r, t)jMg→M ′g

∣∣∣2 . (85)

The corresponding instantaneous differential cross section of the (γ , e) reaction at thej th atom
will be

σγ,e(ω, t)
j = 1

c
je
sc(ω, t)j r

2 (86)

wherec is the flux density of theγ -quanta incident on the target. This cross section must be
averaged over the energy distribution of incidentγ -quanta. As a result one obtains the cross
section

σ̄γ,e(t)
j =

∫ ∞
0
we(E)σγ,e(ω, t)

j dE (87)

which can be measured experimentally.
Again we assume thatE ≈ E+

0 andh̄|αeg| � 0. Then from (83), (84) one has

ψsc(r, t)
(0)
+Mg→+M ′g

= fgg′(k, e; q′)

× 1

r

{
(1− θ(t − r/v))eiq ′r−iε′t/h̄ + θ(t − r/v)eiq−0 r−iε−0 t/h̄e−0(t−r/v)/2h̄

}
(88)

and

ψsc(r, t)
(0)
−Mg→−M ′g = f−g,−g′(k, e; q′)

× 1

r

{
eiq ′r−iε′t/h̄ − eiq+

0 r−iε+
0 t/h̄e−0(t−r/v)/2h̄

}
θ(t − r/v). (89)

The resonant electron energies take the values

ε±0 = ε0 ± (γgM
′
g− γeMe)h0 (90)

where theq±0 are the corresponding wave vectors. The amplitudefgg′(k, e; q′) describes the
(γ, e) reaction in the stationary field +h0:

fgg′(k, e; q′) ∼
∑
Me

M ′g′ej
N
λ (k)eg

E − E+
0 + i0/2

. (91)

From (88), (89) one can see that the electron waves consist of the ordinary wave∼eiq ′r−iε′t/h̄

and transients. When the nucleus is in the +Mg-state, one has att < 0 the ordinary wave and
at t > 0 the transient exponentially attenuating wave packet concentrated at the energyε−0 .
For−Mg-nuclei, there are both ordinary and transient waves. The latter is concentrated at the
energyε+

0.
The above formulae forψsc(r, t) are valid only when the incident radiation is described

by the functionE(r, t) = E0eik·r−iωt . Inside the crystal the electromagnetic wave takes a
much more complicated form, being a superposition of plane waves with different frequencies.
Calculatingψsc(r, t) in this case, we keep in mind that the transient constituents ofE(r, t),
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appearing after the reversal, generate only ordinary electron waves as if the process takes place
in a stationary field. Additionally, we use the relation

eiqr−iεt/h̄ ≈ eiq0r−iε0t/h̄e−i(ω−ω0)(t−r/v) (92)

resulting from the expansion ofq in terms ofε − ε0. Hereafterr is the distance from the
emitting atom.

Then for the conversion-electron wave generated by an atom of themth layer of the crystal
at t > r/v, we find the following expressions:

ψ(m)
sc (r, t)Mg→M ′g = eimFR

exp

(−iβeg(m)/2

x + i

)
h(x, τ )fgg′(k, e; q)1

r
eiq−0 r−iε−0 t/h̄−τ ′/2eikmd

(93)

and

ψ(m)
sc (r, t)−Mg→−M ′g = eimFR

exp

(−iβeg(m)/2

x + i

)
× f−g,−g′(k, e; q)1

r

{
eiq ′r−iε′t/h̄ − h(x, τ ′)eiq+

0 r−iε+
0 t/h̄−τ ′/2

}
eikmd (94)

where

h(x, τ ′) = 1− 1

2

∫ 1

0
dy exp

(
iβeg(m)y/2

x + i

)√
βeg(m)τ ′

y
J1

(√
βeg(m)τ ′y

)
(95)

and

τ ′ = 0(t − r/v)/h̄.
Substituting (93), (94) into (86), (87), one gets the instantaneous averaged cross section

for the(γ, e) reaction at an atom of themth layer:

σ̄ (m)γ,e (t) = σres exp(−µemd)A

∫ ∞
−∞

(γe/π) dx

[(x − x0)2 + γ 2
e ][x2 + 1]

exp

(
−βeg(m)

x2 + 1

)
×
{
|h(x, τ ′)|2e−τ

′
θ(τ ′) + |1− h(x, τ ′) exp(ixτ ′/2− τ ′/2)θ(τ ′)|2

}
(96)

whereσres = σ (0)γ,e(ω
+
0, 0) stands for the resonant value of the cross section (86) at the entrance

surface of the crystal asτ ′ 6 0.
Figures 2 and 3 illustrate the time dependence of the electron yield from the atoms on the

face and exit surfaces, when the resonant transition−1/2→ −1/2 is excited in the nucleus
at t < 0. The parameters are the same as for figure 1 for the transitionb.

The cross section (96) simplifies for the nuclei at the surface face of the crystal(βeg(0) =
0). If x0 = 0, γe = 1, then

σ̄ (0)γ,e(t)/σ̄
(0)
γ,e(0) = 1− τ ′e−τ ′θ(τ ′). (97)

In the opposite limiting case of deep-lying nuclei, whenβeg(m)� 1 and 0< τ ′ ∼ 1, we
find that

σ̄ (m)γ,e (t) ≈ 2σres

(
τ ′

βeg(m)

)
J 2

1

(√
βeg(m)τ ′

)
e−τ

′
θ(τ ′). (98)



3930 A Ya Dzyublik

Figure 2. The time dependence of the ratioR = σγ,e(t)/σγ,e(0) for the (γ, e) reaction on the
entrance surface of the crystal after the reversal of the magnetic field.

Figure 3. The time dependence of the ratioR = σγ,e(t)/σγ,e(0) for the (γ, e) reaction on the exit
surface of the crystal withβb = 43.6 after the reversal of the magnetic field.

6. Discussion

Equations (56)–(59) clearly demonstrate that the incident monochromatic electromagnetic
wave with frequencyω generates inside the crystal the well-known ordinary wave∼e−iωt

and two transient wave packets with carrier frequenciesω±0 , arising after the reversal of the
magnetic field. The wavesEtr (t̃ )(+) are emitted by the nuclei excited prior to the reversal
via the transition +Mg → Me. Their de-excitation to the same stateMg occurs with the
resonant frequencyω−0 corresponding to new value of the field−h0. The waveEtr (t̃ )(−)

results from the sudden opening of the transition att = 0 for those nuclei which are initially
in the state−Mg and do not interact with incident radiation att < 0. The interference of
all of these waves provides a flash of the beam intensity transmitted through a thick crystal
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just after the reversal of the field. Such a flash is followed by attenuating oscillations of the
intensity. This phenomenon, discovered in [12, 13], is illustrated by figure 1, where one can
see good agreement of the calculations with experiment [13]. Note that we used only one
fitting parameter1t , while in [13] all of the parametersaeg andβeg were slightly varied. The
coherent waveE(z, t)coh is a result of averaging over the magnetic quantum numbersMg of
the wavesE(z, t)Mg→Mg. Therefore it is a sum of all three wavesEord andE(±)

tr .
But there is no coherence of the electron waves emitted by different atoms. Therefore we

average overMg just the cross section for this process and not the waves. As a consequence,
the cross section is proportional to the sum of electron fluxes emitted by the atoms with nuclei
in the initial states +Mg and−Mg. The flux from the atom with the nucleus−Mg at t > 0 is
formed by two waves (ordinary and transient), whose interference provides some inhibition
of the electron yield (see figure 2) within a time interval of the order of the nuclear lifetime.
Such suppression should take place only for electrons being emitted from atoms lying near the
surface face of the crystal.

All of the calculations given above for the conversion process are valid for any other
inelastic process—say, for the inelastic scattering ofγ -quanta when the nucleus changes its
orientation(Mg→ M ′g 6= Mg). The suppression of inelastic channels and reactions caused by
the magnetic field reversal is a new effect, unlike the well-known suppression effect occurring
in the diffraction ofγ -quanta or neutrons in a perfect crystal [40–44]. The latter is analogous
to the Borrmann effect [45] of the anomalous transmission of x-rays through a crystal in the
case of Laue diffraction, which is explained by the formation of two standing waves inside
the crystal. A similar effect also arises in inelastic two-wave diffraction [22, 23]. In contrast,
the suppression effect predicted above is due to the interference of the ordinary and transient
waves. This may be observed far from the Bragg condition and even in imperfect crystals or
in amorphous magnetic films.

At the same time, figure 3 shows an increase of the conversion-electron yield from the
atoms lying at the back surface of the crystal after the jump of the magnetic field. This is ensured
by a great flash of the phononless component of the coherent Mössbauer radiation intensity
deep inside the crystal, where the amplitudes of the transient and ordinary electromagnetic
waves become comparable. This great enhancement prevails over the small suppression of the
electron yield.
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